Distributed Probabilistic Learning for Camera Networks

نویسنده

  • Vladimir Pavlovic
چکیده

Probabilistic approaches to computer vision typically assume a centralized setting, with the algorithm granted access to all observed data points. However, many problems in wide-area surveillance can benefit from distributed modeling, either because of physical or computations constraints. In this work we present an approach to estimation and learning of generative probabilistic models in a distributed context. In particular, we show how traditional centralized models, such as probabilistic principal component analysis (PPCA), can be learned when the data is distributed across a network of sensors. We demonstrate the utility of this approach on the problem of distributed affine structure from motion (SfM). Our experiments suggest that the accuracy of the accuracy of the learned probabilistic structure and motion models rivals that of traditional centralized factorization methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Link Prediction Method Based on Learning Automata in Social Networks

Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...

متن کامل

Distributed Probabilistic Learning for Camera Networks with Missing Data

Probabilistic approaches to computer vision typically assume a centralized setting, with the algorithm granted access to all observed data points. However, many problems in wide-area surveillance can benefit from distributed modeling, either because of physical or computational constraints. Most distributed models to date use algebraic approaches (such as distributed SVD) and as a result cannot...

متن کامل

Thesis Proposal Distributed Algorithms for Probabilistic Inference and Learning

Probabilistic inference and learning problems arise naturally in distributed systems such as sensor networks, teams of mobile robots, and recommendation systems. In these systems, the data resides at multiple distributed locations, and the network nodes need to collaborate, in order to perform the inference or learning task. This thesis has three thrusts. First, we propose distributed implement...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Load-Frequency Control: a GA based Bayesian Networks Multi-agent System

Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012